Warning!
Your browser does not support HTML5.
Display of the content may be incorrect. Please make sure that your browser supports HTML5 syntax.
Search for Small Molecules by SMILES, name, CAS, MFCD, ID, InChI Key
Search for Biologics by ID, Target name, CAS, Protein name, Gene ID, Clone ID, Source Organism
Home Chemspace Publications

Publications


  1. 1. MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations

    Marco Gibaldi, Anna Kapeliukha, Andrew White, Jun Luo, Robert Alex Mayo, Jake Burner and Tom K. Woo

    Chemical Science 2025, doi: 10.1039/D4SC07438F
    10.1039d4sc07438f.png
    10.1039d4sc07438f.png
  2. 2. Incorporation of Ligand Charge and Metal Oxidation State Considerations into the Computational Solvent Removal and Activation of Experimental Crystal Structures Preceding Molecular Simulation

    Marco Gibaldi, Anna Kapeliukha, Andrew White, Tom K. Woo

    Journal of Chemical Information and Modeling 2024, doi: 10.1021/acs.jcim.4c01897
    10.1021acs.jcim.4c01897.png
    10.1021acs.jcim.4c01897.png
  3. 3. The freedom space – a new set of commercially available molecules for hit discovery

    Mykola V. Protopopov, Valentyna V. Tararina, Fanny Bonachera, Igor M.Dzyuba, Anna Kapeliukha, Serhii Hlotov, Oleksii Chuk, Gilles Marcou, Olga Klimchuk, Dragos Horvath, Erik Yeghyan, Olena Savych, Olga O. Tarkhanova, Alexandre Varnek, Yurii S. Moroz

    Molecular Informatics 2024, doi: 10.1002/minf.202400114
    10.1002minf.202400114.png
    10.1002minf.202400114.png
  4. 4. Development of a Potent and Selective G2A (GPR132) Agonist

    Victor Hernandez-Olmos, Jan Heering, Beatrice Marinescu, Tina Schermeng, Vladimir V. Ivanov, Yurii S. Moroz, Sheila Nevermann, Marius Mathes, Johanna H. M. Ehrler, Mohamad Wessam Alnouri, Markus Wolf, Alicia S. Haydo, Tessa Schmachtel, Andrea Zaliani, Georg Höfner, Astrid Kaiser, Manfred Schubert-Zsilavecz, Annette G. Beck-Sickinger, Stefan Offermanns, Philipp Gribbon, Michael A. Rieger, Daniel Merk, Marco Sisignano, Dieter Steinhilber, and Ewgenij Proschak

    Journal of Medicinal Chemistry 2024, doi: 10.1021/acs.jmedchem.3c02164
    10.1021acs.jmedchem.3c02164.png
    10.1021acs.jmedchem.3c02164.png
  5. 5. Structure-based discovery of CFTR potentiators and inhibitors

    Fangyu Liu, Anat Levit Kaplan, Jesper Levring, Jürgen Einsiedel, Stephanie Tiedt, Katharina Distler, Natalie S. Omattage, Ivan S. Kondratov,
    Yurii S. Moroz, Harlan L. Pietz, John J. Irwin, Peter Gmeiner, Brian K. Shoichet, Jue Chen

    10.1016j.cell.2024.04.046_2.jpg
    10.1016j.cell.2024.04.046_2.jpg
  6. 6. AlphaFold2 structures guide prospective ligand discovery

    Jiankun Lyu, Nicholas Kapolka, Ryan Gumpper, Assaf Alon, Liang Wang, Manish K. Jain, Ximena Barros-Álvarez, Kensuke Sakamoto, Yoojoong Kim, Jeffrey DiBerto,
    Kuglae Kim, Isabella S. Glenn, Tia A. Tummino, Sijie Huang, John J. Irwin, Olga O. Tarkhanova, Yurii Moroz, Georgios Skiniotis, Andrew C. Kruse, Brian K. Shoichet,
    Bryan L. Roth

    AlphaFold2_structures_guide_prospective_ligand_discovery_4.png
    AlphaFold2_structures_guide_prospective_ligand_discovery_4.png
  7. 7. Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography

    Kaylen R. Meeks, Juan Ji, Mykola V. Protopopov, Olga O. Tarkhanova, Yurii S. Moroz, and John J. Tanner

    Journal of Chemical Information and Modeling 2024, doi: 10.1021/acs.jcim.3c01879
    10.1021_acs.jcim_3c01879_3_4.png
    10.1021_acs.jcim_3c01879_3_4.png
  8. 8. Docking for EP4R antagonists active against inflammatory pain

    S. Gahbauer, C. DeLeon, J. M. Braz, V. Craik, H. J. Kang, X. Wan, X.-P. Huang, C. B. Billesbølle, Y. Liu, T. Che, I. Deshpande, M. Jewell, E. A. Fink, I. S. Kondratov, Y. S. Moroz, J. J. Irwin, A. I. Basbaum, B. L. Roth, B. K. Shoichet

    Nature Communications 2023, doi: 10.1038/s41467-023-43506-6
    10.1038@s41467-023-43506-6_Docking_for_EP4R_antagonists.jpg
    10.1038@s41467-023-43506-6_Docking_for_EP4R_antagonists.jpg
  9. 9. The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions

    Z. Liu, Y. S. Moroz, O. Isayev

    Chemical Science 2023, doi: 10.1039/D3SC03902A
    10.1039@D3SC03902A_ benchmarking_study_of_amide_coupling_reactions.gif
    10.1039@D3SC03902A_ benchmarking_study_of_amide_coupling_reactions.gif
  10. 10. AI-Powered Virtual Screening of Large Compound Libraries Leads to the Discovery of Novel Inhibitors of Sirtuin-1

    A. Gryniukova, F. Kaiser, I. Myziuk, D. Alieksieieva, C. Leberecht, P. P. Heym, O. O. Tarkhanova, Y. S. Moroz, P. Borysko, V. J. Haupt

    Journal of Medicinal Chemistry 2023, doi: 10.1021/acs.jmedchem.3c00128
    AI_Powered_Virtual_Screening_of_Large_Compound_Libraries.png
    AI_Powered_Virtual_Screening_of_Large_Compound_Libraries.png
  11. 11. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors

    E. A. Fink, C. Bardine, S. Gahbauer, I. Singh, T. C. Detomasi, K. White, S. Gu, X. Wan, J. Chen, B. Ary, I. Glenn, J. O’Connell, H. O’Donnell, P. Fajtová, J. Lyu, S. Vigneron, N. J. Young, I. S. Kondratov, A. Alisoltani, L. M. Simons, R. Lorenzo‐Redondo, E. A. Ozer, J. F. Hultquist, A. J. O’Donoghue, Y. S. Moroz, J. Taunton, A. R. Renslo, J. J. Irwin, A. García‐Sastre, B. K. Shoichet, C. S. Craik

    Protein Science 2023, doi: 10.1002/pro.4712
    large_library_docking_for_novel_SARS-CoV-2_main_protease_inhibitors.jpg
    large_library_docking_for_novel_SARS-CoV-2_main_protease_inhibitors.jpg
  12. 12. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes

    Y. Chen, G. B. Craven, R. A. Kamber, A. Cuesta, S. Zhersh, Y. S. Moroz, M. C. Bassik, J. Taunton

    Nature Chemistry 2023, doi: 10.1038/s41557-023-01281-3
    direct-mapping-of-ligandable-tyrosines-and-lysines_1.jpg
    direct-mapping-of-ligandable-tyrosines-and-lysines_1.jpg
  13. 13. Computer-Aided Design Of Muscarinic Acetylcholine Receptor M3 Inhibitors: Promising Compounds Among Trifluoromethyl Containing Hexahydropyrimidinones/Thiones

    A. Nyporko, O. Tsymbalyuk, I. Voiteshenko, S. Starosyla, M. Protopopov, V. Bdzhola

    Molecular Informatics 2023, doi: 10.1002/minf.202300006
    design-of-muscarinic-acetylcholine-receptor-m3-inhibitors_1.jpg
    design-of-muscarinic-acetylcholine-receptor-m3-inhibitors_1.jpg
  14. 14. Discovery, Synthesis, and In Vitro Characterization of 2,3 Derivatives of 4,5,6,7-Tetrahydro-Benzothiophene as Potent Modulators of Retinoic Acid Receptor-Related Orphan Receptor γt

    A. Fouda, S. Negi, O. Zaremba, R. S. Gaidar, Y. S. Moroz, E. Rusanov, S. Paraskevas, J. Tchervenkov

    Journal of Medicinal Chemistry 2023, doi: 10.1021/acs.jmedchem.3c00021
    potent_modulators_of_retinoic_acid_receptor-related_orphan_receptor_γt.png
    potent_modulators_of_retinoic_acid_receptor-related_orphan_receptor_γt.png
  15. 15. ZINC-22─A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery

    B. I. Tingle, K. G. Tang, M. Castanon, J. J. Gutierrez, M. Khurelbaatar, C. Dandarchuluun, Y. S. Moroz, J. J. Irwin

    Journal of Chemical Information and Modeling 2023, doi: 10.1021/acs.jcim.2c01253
    zinc-22-multi-billion-database-tangible-compounds-for-ld.jpeg
    zinc-22-multi-billion-database-tangible-compounds-for-ld.jpeg
  16. 16. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2

    S. Gahbauer, G. J. Correy, M. Schuller, M. P. Ferla, Y. U. Doruk, M. Rachman, T. Wu, M. Diolaiti, S. Wang, R. J. Neitz, D. Fearon, D. S. Radchenko, Y. S. Moroz, J. J. Irwin, A. R. Renslo, J. C. Taylor, J. E. Gestwicki, F. von Delft, A. Ashworth, I. Ahel, B. K. Shoichet, J. S. Fraser

    Proceedings of the National Academy of Sciences (PNAS) 2023, doi: 10.1073/pnas.2212931120
    sb-discovery-sars-cov2-macrodomain-inhibitors.jpg
    sb-discovery-sars-cov2-macrodomain-inhibitors.jpg
  17. 17. Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and support

    I. S. Kondratov, Y. S. Moroz, C. Gorgulla, O. O. Grygorenko, I. V. Komarov, G. Wagner, A. A. Tolmachev

    Proceedings of the National Academy of Sciences (PNAS) 2022, doi: 10.1073/pnas.2210686119
    challenges-for-chemistry-in-ukraine-after-the-war.jpg
    challenges-for-chemistry-in-ukraine-after-the-war.jpg
  18. 18. C−C Coupling through Nitrogen Deletion: Application to Library Synthesis

    S. Holovach, K. P. Melnykov, I. Poroshyn, R. T. Iminov, D. Dudenko, I. Kondratov, M. Levin, O. O. Grygorenko

    Chemistry A European Journal 2022, doi: 10.1002/chem.202203470
    c-c-coupling-nitrogen-deletion.png
    c-c-coupling-nitrogen-deletion.png
  19. 19. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields

    D. Yarish, S. Garkot, O. O. Grygorenko, D. S. Radchenko, Y. S. Moroz, O. Gurbych

    Journal of Computational Chemistry 2022, doi: 10.1002/jcc.27016
    advancing-molecular-graphs-with-descriptors.jpg
    advancing-molecular-graphs-with-descriptors.jpg
  20. 20. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds

    M. Korshunova, N. Huang, S. Capuzzi, D. S. Radchenko, O. Savych, Y. S. Moroz, C. I. Wells, T. M. Willson, A. Tropsha, O. Isayev

    Communications Chemistry 2022, doi: 10.1038/s42004-022-00733-0
    generative-and-reinforcement-learning-approaches.jpg
    generative-and-reinforcement-learning-approaches.jpg
  21. 21. Magnet for the Needle in Haystack: “Crystal Structure First” Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces

    J. Müller, R. Klein, O. Tarkhanova, A. Gryniukova, P. Borysko, S. Merkl, M. Ruf, A. Neumann, M. Gastreich, Y. S. Moroz, G. Klebe, S. Glinca

    Journal of Medicinal Chemistry 2022, doi: 10.1021/acs.jmedchem.2c00813
    magnet-for-the-needle-in-haystack.png
    magnet-for-the-needle-in-haystack.png
  22. 22. Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor

    E. A. Fink, J. Xu, H. Hübner, J. M. Braz, P. Seemann, C. Avet, V. Craik, D. Weikert, M. F. Schmidt, C. M. Webb, N. A. Tolmachova, Y. S. Moroz, X.-P. Huang, C. Kalyanaraman, S. Gahbauer, G. Chen, Z. Liu, M. P. Jacobson, J. J. Irwin, M. Bouvier, Y. Du, B. K. Shoichet, A. I. Basbaum, P. Gmeiner

    discovery-of-nonopioid-analgesics-for-adrenergic-receptor.jpg
    discovery-of-nonopioid-analgesics-for-adrenergic-receptor.jpg
  23. 23. The Ukrainian Factor in Early-Stage Drug Discovery in the Context of Russian Invasion: The Case of Enamine Ltd

    I. S. Kondratov, Y. S. Moroz, O. O. Grygorenko, A. A. Tolmachev

    ACS Medicinal Chemistry Letters 2022, doi: 10.1021/acsmedchemlett.2c00211
    ukrainian-factor-in-early-stage-drug-discover.jpeg
    ukrainian-factor-in-early-stage-drug-discover.jpeg
  24. 24. In Vitro and In Silico Evaluation of Cholinesterase Inhibition by Alkaloids Obtained from Branches of Abuta panurensis Eichler

    R. da Silva Mesquita, A. Kyrylchuk, A. Cherednichenko, I. S. Costa Sá, L. Macedo Bastos, F. Moura Araújo da Silva, R. de C. Saraiva Nunomura, A. Grafov

    evaluation-of-cholinesterase-inhibition-by-alkaloids.png
    evaluation-of-cholinesterase-inhibition-by-alkaloids.png
  25. 25. Creation of targeted compound libraries based on 3D shape recognition

    A. Kyrylchuk, I. Kravets, A. Cherednichenko, V. Tararina, A. Kapeliukha, D. Dudenko, M. Protopopov

    Molecular Diversity 2022, doi: 10.1007/s11030-022-10447-z
    creation-of-targeted-compound-libraries.jpg
    creation-of-targeted-compound-libraries.jpg
  26. 26. Virtual Screening in Search for a Chemical Probe for Angiotensin-Converting Enzyme 2 (ACE2)

    I. O. Kravets, D. V. Dudenko, A. E. Pashenko, T. A. Borisova, G. M. Tolstanova, S. V. Ryabukhin, D. M. Volochnyuk

    virtual-screening-ace2.jpeg
    virtual-screening-ace2.jpeg
  27. 27. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry

    Y. Zabolotna, D. M. Volochnyuk, S. V. Ryabukhin, D. Horvath, K. S. Gavrilenko, G. Marcou, Y. S. Moroz, O. Oksiuta, A. Varnek

    Journal of Chemical Information and Modeling 2021, doi: 10.1021/acs.jcim.1c00811
    close-up-look-at-the-chemical-space.jpeg
    close-up-look-at-the-chemical-space.jpeg
  28. 28. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds

    A. A. Sadybekov, A. V. Sadybekov, Y. Liu, C. Iliopoulos-Tsoutsouvas, X.-P. Huang, J. Pickett, B. Houser, N. Patel, N. K. Tran, F. Tong, N. Zvonok, M. K. Jain, O. Savych, D. S. Radchenko, S. P. Nikas, N. A. Petasis, Y. S. Moroz, B. L. Roth, A. Makriyannis, V. Katritch

    synthon-based-ligand-discovery.jpeg
    synthon-based-ligand-discovery.jpeg
  29. 29. Structures of the σ2 receptor enable docking for bioactive ligand discovery

    A. Alon, J. Lyu, J. M. Braz, T. A. Tummino, V. Craik, M. J. O’Meara, C. M. Webb, D. S. Radchenko, Y. S. Moroz, X.-P. Huang, Y. Liu, B. L. Roth, J. J. Irwin, A. I. Basbaum, B. K. Shoichet, A. C. Kruse

    sigma2-receptor-docking.jpeg
    sigma2-receptor-docking.jpeg
  30. 30. SynthI: A New Open-Source Tool for Synthon-Based Library Design

    Y. Zabolotna, D. M. Volochnyuk, S. V. Ryabukhin, K. Gavrylenko, D. Horvath, O. Klimchuk, O. Oksiuta, G. Marcou, A. Varnek

    Journal of Chemical Information and Modeling 2021, doi: 10.1021/acs.jcim.1c00754
    SynthI-a-new-open-source-tool
    SynthI-a-new-open-source-tool
  31. 31. Scalable Approach to Fluorinated Heterocycles with Sulfur Tetrafluoride (SF4)

    S. Trofymchuk, M. Bugera, A. A. Klipkov, V. Ahunovych, B. Razhyk, S. Semenov, A. Boretskyi, K. Tarasenko, P. K. Mykhailiuk

    The Journal of Organic Chemistry 2021, doi: 10.1021/acs.joc.1c01518
    Fluorinated-heterocycles-with-SF4
    Fluorinated-heterocycles-with-SF4
  32. 32. One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles

    D. S. Radchenko, V. S. Naumchyk, I. Dziuba, A. A. Kyrylchuk, K. E. Gubina, Y. S. Moroz, O. O. Grygorenko

    Molecular Diversity 2021, doi: 10.1007/s11030-021-10218-2
    triazoles-parallel-synthesis
    triazoles-parallel-synthesis
  33. 33. Synthesis of α-substituted 2-(1H-1,2,4-triazol-3-yl)acetates and 5-amino-2,4-dihydro-3H-pyrazol-3-ones via the Pinner strategy

    D. M. Khomenko, R. O. Doroshchuk, H. V. Ivanova, B. V. Zakharchenko, I. V. Raspertova, O. V. Vaschenko, S. Shova, A. V. Dobrydnev, Y. S. Moroz, O. O. Grygorenko, R. D. Lampeka

    Tetrahedron Letters 2021, doi: 10.1016/j.tetlet.2021.152956
    Pinner-strategy-for-pyrazolones
    Pinner-strategy-for-pyrazolones
  34. 34. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening

    C. Gorgulla, K. M. Padmanabha Das, K. E. Leigh, M. Cespugli, P. D. Fischer, Z.-F. Wang, G. Tesseyre, S. Pandita, A. Shnapir, A. Calderaio, M. Gechev, A. Rose, N. Lewis, C. Hutcheson, E. Yaffe, R. Luxenburg, H. D. Herce, V. Durmaz, T. D. Halazonetis, K. Fackeldey, J. J. Patten, A. Chuprina, I. Dziuba, A. Plekhova, Y. Moroz, D. Radchenko, O. Tarkhanova, I. Yavnyuk, C. Gruber, R. Yust, D. Payne, A. M. Näär, M. N. Namchuk, R. A. Davey, G. Wagner, J. Kinney, H. Arthanari

    ULVS-against-SARS-CoV-2-proteins
    ULVS-against-SARS-CoV-2-proteins
  35. 35. Generating Multibillion Chemical Space of Readily Accessible Screening Compounds

    O. O. Grygorenko, D. S. Radchenko, I. Dziuba, A. Chuprina, K. E. Gubina, Y. S. Moroz

    Generating-of-REAL-cmpds
    Generating-of-REAL-cmpds
  36. 36. SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules

    H. Patel, W.-D. Ihlenfeldt, P. N. Judson, Y. S. Moroz, Y. Pevzner, M. L. Peach, V. Delannée, N. I. Tarasova, M. C. Nicklaus

    Scientific Data 2020, doi: 10.1038/s41597-020-00727-4
    SAVI-generation-billions-cmpds
    SAVI-generation-billions-cmpds
  37. 37. ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery

    J. J. Irwin, K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, M. Khurelbaatar, Y. S. Moroz, J. Mayfield, R. A. Sayle

    Journal of Chemical Information and Modeling 2020, doi: 10.1021/acs.jcim.0c00675
    ZINC20-for-ligand-discovery
    ZINC20-for-ligand-discovery
  38. 38. Atomic ring invariant and Modified CANON extended connectivity algorithm for symmetry perception in molecular graphs and rigorous canonicalization of SMILES

    D. G. Krotko

    Journal of Cheminformatics 2020, doi: 10.1186/s13321-020-00453-4
  39. 39. Synthesis, biological evaluation, and modeling studies of 1,3-disubstituted cyclobutane-containing analogs of combretastatin A4

    A. Malashchuk, A. V. Chernykh, V. V. Hurmach, M. O. Platonov, O. Onopchenko, S. Zozulya, C. G. Daniliuc, A. V. Dobrydnev, I. S. Kondratov, Y. S. Moroz, O. O. Grygorenko

    Journal of Molecular Structure 2020, doi: 10.1016/j.molstruc.2020.128025
    analogs-of-combretastatin-synth
    analogs-of-combretastatin-synth
  40. 40. Multigram Synthesis of Advanced 6,6-Difluorospiro[3.3]heptane-Derived Building Blocks

    S. Olifir, A. V. Chernykh, A. V. Dobrydnev, O. O. Grygorenko, Y. S. Moroz, Z. V. Voitenko, D. S. Radchenko

    European Journal of Organic Chemistry 2020, doi: 10.1002/ejoc.202000432
    Difluorospiroheptane-BBs
    Difluorospiroheptane-BBs
  41. 41. Synthesis of Spirocyclic β‐ and γ‐Sultams by One‐Pot Reductive Cyclization of Cyanoalkylsulfonyl Fluorides

    K. O. Stepannikova, B. V. Vashchenko, O. O. Grygorenko, M. V. Gorichko, A. Y. Cherepakha, Y. S. Moroz, Y. M. Volovenko, S. Zhersh

    European Journal of Organic Chemistry 2020, doi: 10.1002/ejoc.202000351
    Cyanoalkylsulfonyl-fluorides-synth
    Cyanoalkylsulfonyl-fluorides-synth
  42. 42. An open-source drug discovery platform enables ultra-large virtual screens

    C. Gorgulla, A. Boeszoermenyi, Z.-F. Wang, P. D. Fischer, P. W. Coote, K. M. Padmanabha Das, Y. S. Malets, D. S. Radchenko, Y. S. Moroz, D. A. Scott, K. Fackeldey, M. Hoffmann, I. Iavniuk, G. Wagner, H. Arthanari

    ULVS-open-source-platform
    ULVS-open-source-platform
  43. 43. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms

    R. M. Stein, H. J. Kang, J. D. McCorvy, G. C. Glatfelter, A. J. Jones, T. Che, S. Slocum, X.-P. Huang, O. Savych, Y. S. Moroz, B. Stauch, L. C. Johansson, V. Cherezov, T. Kenakin, J. J. Irwin, B. K. Shoichet, B. L. Roth, M. L. Dubocovich

    virtual-discovery-of-MR-ligands
    virtual-discovery-of-MR-ligands
  44. 44. Sulfonimidamides and Imidosulfuric Diamides: Compounds from an Underexplored Part of Biologically Relevant Chemical Space

    S. V. Zasukha, V. M. Timoshenko, A. A. Tolmachev, V. O. Pivnytska, O. Gavrylenko, S. Zhersh, Y. Shermolovich, O. O. Grygorenko

    Chemistry – A European Journal 2020, doi: 10.1002/chem.201901179
    Sulfonimidamides-and-imidosulfuric-diamides
    Sulfonimidamides-and-imidosulfuric-diamides
  45. 45. (Het)aryl Difluoromethyl-Substituted β-Alkoxyenones: Synthesis and Heterocyclizations

    Y. Bugera, K. V. Tarasenko, I. S. Kondratov, I. I. Gerus, B. V. Vashchenko, V. E. Ivasyshyn, O. O. Grygorenko

    European Journal of Organic Chemistry 2019, doi: 10.1002/ejoc.201901833
    Synthesis-of-b-alkoxyenones
    Synthesis-of-b-alkoxyenones
  46. 46. Regioselective Synthesis of Functionalized 3- or 5-Fluoroalkyl Isoxazoles and Pyrazoles from Fluoroalkyl Ynones and Binucleophiles

    B. A. Chalyk, A. Khutorianskyi, A. Lysenko, Y. Fil, Y. O. Kuchkovska, K. S. Gavrilenko, I. Bakanovych, Y. S. Moroz, A. O. Gorlova, O. O. Grygorenko

    The Journal of Organic Chemistry 2019, doi: 10.1021/acs.joc.9b02258
    Regiosel-synth-of-isoxazoles-and-pyrazoles
    Regiosel-synth-of-isoxazoles-and-pyrazoles
  47. 47. Synthesis of 5-(Fluoroalkyl)isoxazole Building Blocks by Regioselective Reactions of Functionalized Halogenoximes

    B. A. Chalyk, K. V. Hrebeniuk, Y. V. Fil, K. S. Gavrilenko, A. B. Rozhenko, B. V. Vashchenko, O. V. Borysov, A. V. Biitseva, P. S. Lebed, I. Bakanovych, Y. S. Moroz, O. O. Grygorenko

    The Journal of Organic Chemistry 2019, doi: 10.1021/acs.joc.9b02264
    isoxazole-BBs-synth
    isoxazole-BBs-synth
  48. 48. SAR by Space: Enriching Hit Sets from the Chemical Space

    F.-M. Klingler, M. Gastreich, O. Grygorenko, O. Savych, P. Borysko, A. Griniukova, K. Gubina, C. Lemmen, Y. Moroz

    SAR-by-Space
    SAR-by-Space
  49. 49. One-Pot Parallel Synthesis of 5-(Dialkylamino)tetrazoles

    O. Savych, Y. O. Kuchkovska, A. V. Bogolyubsky, A. I. Konovets, K. E. Gubina, S. E. Pipko, A. V. Zhemera, A. V. Grishchenko, D. N. Khomenko, V. S. Brovarets, R. Doroschuk, Y. S. Moroz, O. O. Grygorenko

    ACS Combinatorial Science 2019, doi: 10.1021/acscombsci.9b00120
    Parallel-synthesis-of-tetrazoles
    Parallel-synthesis-of-tetrazoles
  50. 50. Pros and cons of virtual screening based on public ‘Big Data’: In silico mining for new bromodomain inhibitors

    I. Casciuc, D. Horvath, A. Gryniukova, K. A. Tolmachova, O. V. Vasylchenko, P. Borysko, Y. S. Moroz, J. Bajorath, A. Varnek

    European Journal of Medicinal Chemistry 2019, doi: 10.1016/j.ejmech.2019.01.010
    virtual-screening-on-public-Big-Data
    virtual-screening-on-public-Big-Data
  51. 51. Ultra-large library docking for discovering new chemotypes

    J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz, M. J. O’Meara, T. Che, E. Algaa, K. Tolmachova, A. A. Tolmachev, B. K. Shoichet, B. L. Roth, J. J. Irwin

    Ultra-large-library-docking
    Ultra-large-library-docking
  52. 52. Evolution of commercially available compounds for HTS

    D. M. Volochnyuk, S. V. Ryabukhin, Y. S. Moroz, O. Savych, A. Chuprina, D. Horvath, Y. Zabolotna, A. Varnek, D. B. Judd

    Drug Discovery Today 2018, doi: 10.1016/j.drudis.2018.10.016
    compounds-for-HTS
    compounds-for-HTS
  53. 53. (Chlorosulfonyl)benzenesulfonyl Fluorides—Versatile Building Blocks for Combinatorial Chemistry: Design, Synthesis and Evaluation of a Covalent Inhibitor Library

    K. A. Tolmachova, Y. S. Moroz, A. Konovets, M. O. Platonov, O. V. Vasylchenko, P. Borysko, S. Zozulya, A. Gryniukova, A. V. Bogolubsky, S. Pipko, P. K. Mykhailiuk, V. S. Brovarets, O. O. Grygorenko

    ACS Combinatorial Science 2018, doi: 10.1021/acscombsci.8b00130
    benzenesulfonyl-fluorides-BBs-for-CC
    benzenesulfonyl-fluorides-BBs-for-CC
  54. 54. Facile One-Pot Parallel Synthesis of 3-Amino-1,2,4-triazoles

    A. V. Bogolyubsky, O. Savych, A. V. Zhemera, S. E. Pipko, A. V. Grishchenko, A. I. Konovets, R. O. Doroshchuk, D. N. Khomenko, V. S. Brovarets, Y. S. Moroz, M. Vybornyi

    ACS Combinatorial Science 2018, doi: 10.1021/acscombsci.8b00060
    Parallel-synth-of-Aminotriazoles
    Parallel-synth-of-Aminotriazoles
  55. 55. Saturated Heterocyclic Aminosulfonyl Fluorides: New Scaffolds for Protecting-Group-Free Synthesis of Sulfonamides

    S. A. Zhersh, O. P. Blahun, I. V. Sadkova, A. A. Tolmachev, Y. S. Moroz, P. K. Mykhailiuk

    Chemistry - A European Journal 2018, doi: 10.1002/chem.201801140
    heterocyclic-aminosulfonyl-F-scaffolds
    heterocyclic-aminosulfonyl-F-scaffolds